Home
A/B testing is widely used to determine the impact of new ideas and to decide on whether something is put in production in the long-term. Causal inference focuses on drawing conclusions based on observational data. Especially analyzing panel data (a data set with a unit and time dimension) can be challenging. For a general introduction into causal inference, we highly recommend having a look at the open-source book: Causal Inference for The Brave and True.
Installation
For the latest stable release please use the official Python package manager:
pip install -U azcausal
Estimators
azcausal is a toolkit for causal inference in general and provides implementations of well-known and widely used causal inference methods (e.g. DID, SDID).
Estimator |
Reference |
---|---|
[AAH+21] |
|
[ADSS21] |
Features
Besides the estimator itself, error estimation techniques (e.g. Bootstrap, Placebo, JackKnife) attach a confidence level to the impact predictions. The result of an impact estimation in azcausal can look as follows:
╭──────────────────────────────────────────────────────────────────────────────╮
| CaliforniaProp99 |
├==============================================================================┤
| Panel |
| Time Periods: 31 (19/12) total (pre/post) |
| Units: 39 (38/1) total (contr/treat) |
├──────────────────────────────────────────────────────────────────────────────┤
| ATT |
| Effect (±SE): -15.60 (±7.7087) |
| Confidence Interval (95%): [-30.71 , -0.495030] (-) |
| Observed: 60.35 |
| Counter Factual: 75.95 |
├──────────────────────────────────────────────────────────────────────────────┤
| Percentage |
| Effect (±SE): -20.54 (±10.15) |
| Confidence Interval (95%): [-40.44 , -0.651752] (-) |
| Observed: 79.46 |
| Counter Factual: 100.00 |
├──────────────────────────────────────────────────────────────────────────────┤
| Cumulative |
| Effect (±SE): -187.25 (±92.50) |
| Confidence Interval (95%): [-368.55 , -5.9404] (-) |
| Observed: 724.20 |
| Counter Factual: 911.45 |
╰──────────────────────────────────────────────────────────────────────────────╯
Moreover azcausal supports the visualization of results:

Contact
Feel free to contact me if you have any questions: