ocl.datasets
Implementation of datasets.
WebdatasetDataModule
Bases: pl.LightningDataModule
Webdataset Data Module.
Source code in ocl/datasets.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
__init__
Initialize WebdatasetDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_shards |
Optional[Union[str, List[str]]]
|
Shards associated with training split. Supports braceexpand notation. |
None
|
val_shards |
Optional[Union[str, List[str]]]
|
Shards associated with validation split. Supports braceexpand notation. |
None
|
test_shards |
Optional[Union[str, List[str]]]
|
Shards associated with test split. Supports braceexpand notation. |
None
|
batch_size |
int
|
Batch size to use for training. |
32
|
eval_batch_size |
Optional[int]
|
Batch size to use for evaluation (i.e. on validation and test split).
If |
None
|
train_transforms |
Optional[Dict[str, Transform]]
|
Transforms to apply during training. We use a dict here to make composition of configurations with hydra more easy. |
None
|
eval_transforms |
Optional[Dict[str, Transform]]
|
Transforms to apply during evaluation. We use a dict here to make composition of configurations with hydra more easy. |
None
|
num_workers |
int
|
Number of workers to run in parallel. |
2
|
train_size |
Optional[int]
|
Number of instance in the train split (used for progressbar). |
None
|
val_size |
Optional[int]
|
Number of instance in the validation split (used for progressbar). |
None
|
test_size |
Optional[int]
|
Number of instance in the test split (used for progressbar). |
None
|
shuffle_train |
bool
|
Shuffle training split. Only used to speed up operations on train split
unrelated to training. Should typically be left at |
True
|
shuffle_buffer_size |
Optional[int]
|
Buffer size to use for shuffling. If |
None
|
use_autopadding |
bool
|
Enable autopadding of instances with different dimensions. |
False
|
Source code in ocl/datasets.py
DummyDataModule
Bases: pl.LightningDataModule
Dataset providing dummy data for testing.
Source code in ocl/datasets.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
|
__init__
Initialize DummyDataModule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_shapes |
Dict[str, List[int]]
|
Mapping field names to shapes of tensors. |
required |
data_types |
Dict[str, str]
|
Mapping from field names to types of tensors. One of |
required |
batch_size |
int
|
Batch size to use for training. |
4
|
eval_batch_size |
Optional[int]
|
Batch size to use for evaluation (i.e. on validation and test split).
If |
None
|
train_transforms |
Optional[Dict[str, Transform]]
|
Transforms to apply during training. |
None
|
eval_transforms |
Optional[Dict[str, Transform]]
|
Transforms to apply during evaluation. |
None
|
train_size |
Optional[int]
|
Number of instance in the train split (used for progressbar). |
None
|
val_size |
Optional[int]
|
Number of instance in the validation split (used for progressbar). |
None
|
test_size |
Optional[int]
|
Number of instance in the test split (used for progressbar). |
None
|
train_shards |
Optional[str]
|
Kept for compatibility with WebdatasetDataModule. Has no effect. |
None
|
val_shards |
Optional[str]
|
Kept for compatibility with WebdatasetDataModule. Has no effect. |
None
|
test_shards |
Optional[str]
|
Kept for compatibility with WebdatasetDataModule. Has no effect. |
None
|
num_workers |
Optional[int]
|
Kept for compatibility with WebdatasetDataModule. Has no effect. |
None
|
Source code in ocl/datasets.py
collate_with_batch_size
Default pytorch collate function with additional batch_size
output for dict input.
Source code in ocl/datasets.py
collate_with_autopadding
Collate function that takes a batch of data and stacks it with a batch dimension.
In contrast to torch's collate function, this function automatically pads tensors of different sizes with zeros such that they can be stacked.
Adapted from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py.
Source code in ocl/datasets.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
|