ocl.typing
Types used in object centric learning framework.
ImageData = TensorType['batch size', 'channels', 'height', 'width']
module-attribute
VideoData = TensorType['batch size', 'frames', 'channels', 'height', 'width']
module-attribute
ImageOrVideoData = Union[VideoData, ImageData]
module-attribute
TextData = TensorType['batch_size', 'max_tokens']
module-attribute
CNNImageFeatures = ImageData
module-attribute
TransformerImageFeatures = TensorType['batch_size', 'n_spatial_features', 'feature_dim']
module-attribute
ImageFeatures = TransformerImageFeatures
module-attribute
VideoFeatures = TensorType['batch_size', 'frames', 'n_spatial_features', 'feature_dim']
module-attribute
ImageOrVideoFeatures = Union[ImageFeatures, VideoFeatures]
module-attribute
Positions = TensorType['n_spatial_features', 'spatial_dims']
module-attribute
PooledFeatures = TensorType['batch_size', 'feature_dim']
module-attribute
ObjectFeatures = TensorType['batch_size', 'n_objects', 'object_dim']
module-attribute
EmptyIndicator = TensorType['batch_size', 'n_objects']
module-attribute
ObjectFeatureAttributions = TensorType['batch_size', 'n_objects', 'n_spatial_features']
module-attribute
ConditioningOutput = TensorType['batch_size', 'n_objects', 'object_dim']
module-attribute
Output of conditioning modules.
FrameFeatures
dataclass
FeatureExtractorOutput
dataclass
Output of feature extractor.
Source code in ocl/typing.py
features: ImageOrVideoFeatures
class-attribute
positions: Positions
class-attribute
aux_features: Optional[Dict[str, torch.Tensor]] = None
class-attribute
__iter__
Iterate over features and positions per frame.
Source code in ocl/typing.py
PerceptualGroupingOutput
dataclass
Output of a perceptual grouping algorithm.