configs/cluster/mlflow_logging.yaml
# @package _global_
# Configuration of mlflow logger. This is basic example of the usage.
trainer:
# We rely on hydras dir management
default_root_dir: .
logger:
_target_: ocl.utils.logging.ExtendedMLFlowLogger
# Override if you want to have a different structure
experiment_name: ${slice:${hydra:runtime.choices.experiment},"/",0}
run_name: ${slice:${hydra:runtime.choices.experiment},"/","1:"}_${now:%Y-%m-%d_%H-%M-%S}
experiment:
callbacks:
checkpoint:
_target_: pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
log_hydra_config:
_target_: ocl.utils.logging.LogHydraConfigCallback
hydra_output_subdir: ${hydra:output_subdir}
# Add this in order to track parameters from the hydra config as hyperparameters
additional_paths:
log_model_summary:
_target_: ocl.utils.logging.LogModelSummaryCallback
hydra:
job:
chdir: true