configs/experiment/SAVi_code/cater_savi_with_predictor.yaml
# @package _global_
# An example implementaiton of SAVi that leverages a model definition in code.
# The code can be found in `ocl/models/savi.py`, the config is used to
# instantiate the submodules used by the code.
defaults:
- /experiment/_output_path # (1)!
- /training_config # (2)!
- /dataset: cater # (3)!
- _self_
trainer:
devices: 8
gradient_clip_val: 0.05
gradient_clip_algorithm: norm
max_epochs:
max_steps: 199999
callbacks:
- _target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: step
dataset:
num_workers: 4
batch_size: 8
train_transforms:
03_preprocessing:
_target_: ocl.transforms.SimpleTransform
transforms:
image:
_target_: ocl.preprocessing.VideoToTensor
batch_transform: false
02_random_strided_window:
_target_: ocl.transforms.SampleConsecutive
fields:
- image
n_consecutive: 6
eval_transforms:
03_preprocessing:
_target_: ocl.transforms.SimpleTransform
transforms:
image:
_target_: ocl.preprocessing.VideoToTensor
mask:
_target_: ocl.preprocessing.MultiMaskToTensor
batch_transform: false
models:
_target_: ocl.models.SAVi
conditioning:
_target_: routed.ocl.conditioning.LearntConditioning
object_dim: 128
n_slots: 11
batch_size_path: input.batch_size
feature_extractor:
# Use the smaller verion of the feature extractor architecture.
_target_: ocl.feature_extractors.SAViFeatureExtractor
larger_input_arch: false
perceptual_grouping:
_target_: ocl.perceptual_grouping.SlotAttentionGrouping
feature_dim: 32
object_dim: ${models.conditioning.object_dim}
iters: 2
kvq_dim: 128
use_projection_bias: false
positional_embedding:
_target_: ocl.neural_networks.wrappers.Sequential
_args_:
- _target_: ocl.neural_networks.positional_embedding.SoftPositionEmbed
n_spatial_dims: 2
feature_dim: 32
savi_style: true
- _target_: ocl.neural_networks.build_two_layer_mlp
input_dim: 32
output_dim: 32
hidden_dim: 64
initial_layer_norm: true
ff_mlp:
decoder:
_target_: ocl.decoding.SlotAttentionDecoder
decoder:
_target_: ocl.decoding.get_savi_decoder_backbone
object_dim: ${models.perceptual_grouping.object_dim}
larger_input_arch: false
positional_embedding:
_target_: ocl.neural_networks.positional_embedding.SoftPositionEmbed
n_spatial_dims: 2
feature_dim: ${models.perceptual_grouping.object_dim}
cnn_channel_order: true
savi_style: true
transition_model:
_target_: torch.nn.TransformerEncoderLayer
d_model: 128
nhead: 4
dim_feedforward: 256
batch_first: true
losses:
mse:
_target_: routed.ocl.losses.ReconstructionLoss
loss_type: mse_sum
input_path: decoder.reconstruction
target_path: input.image
visualizations:
input:
_target_: routed.ocl.visualizations.Video
denormalization:
video_path: input.image
reconstruction:
_target_: routed.ocl.visualizations.Video
denormalization: ${..input.denormalization}
video_path: decoder.reconstruction
objects:
_target_: routed.ocl.visualizations.VisualObject
denormalization: ${..input.denormalization}
object_path: decoder.object_reconstructions
mask_path: decoder.masks
objectmot:
_target_: routed.ocl.visualizations.TrackedObject_from_Mask
n_clips: 1
denormalization:
video_path: input.image
object_masks_path: decoder.masks
evaluation_metrics:
ari:
_target_: routed.ocl.metrics.ARIMetric
prediction_path: decoder.masks
target_path: input.mask
mot:
_target_: routed.ocl.metrics.MOTMetric
prediction_path: decoder.masks
target_path: input.mask
optimizers:
opt0:
_target_: ocl.optimization.OptimizationWrapper
optimizer:
_target_: torch.optim.Adam
_partial_: true
lr: 0.0002
lr_scheduler:
_target_: ocl.scheduling.cosine_annealing_with_optional_warmup
_partial_: true
T_max: 200000
eta_min: 0.0
warmup_steps: 2500
- /experiment/_output_path
- /training_config
- /dataset/cater