configs/experiment/projects/bridging/dinosaur/_preprocessing_coco_imagenet_feature_recon.yaml
# @package dataset
# Override parts of preprocessing, imagenet model used different normalization.
train_transforms:
03b_preprocessing:
transforms:
image:
_target_: torchvision.transforms.Compose
transforms:
- _target_: torchvision.transforms.ToTensor
- _target_: torchvision.transforms.Resize
size: 224
interpolation: ${torchvision_interpolation_mode:BICUBIC}
- "${lambda_fn:'lambda image: image.clamp(0.0, 1.0)'}" # Bicubic interpolation can get out of range
- _target_: torchvision.transforms.RandomCrop
size: 224
- _target_: torchvision.transforms.RandomHorizontalFlip
- _target_: torchvision.transforms.Normalize
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]
eval_transforms:
03b_preprocessing:
transforms:
image:
_target_: torchvision.transforms.Compose
transforms:
- _target_: torchvision.transforms.ToTensor
- _target_: torchvision.transforms.Resize
size: 224
interpolation: ${torchvision_interpolation_mode:BICUBIC}
- "${lambda_fn:'lambda image: image.clamp(0.0, 1.0)'}" # Bicubic interpolation can get out of range
- _target_: torchvision.transforms.CenterCrop
size: 224
- _target_: torchvision.transforms.Normalize
mean: [0.5, 0.5, 0.5]
std: [0.5, 0.5, 0.5]