Skip to content

configs/experiment/projects/bridging/dinosaur/coco_feat_rec_dino_base16.yaml

# @package _global_
defaults:
  - /experiment/projects/bridging/dinosaur/_base_feature_recon  # (1)!
  - /dataset: coco  # (2)!
  - /experiment/projects/bridging/dinosaur/_preprocessing_coco_dino_feature_recon_ccrop # (3)!
  - /experiment/projects/bridging/dinosaur/_metrics_coco # (4)!
  - _self_

# The following parameters assume training on 8 GPUs, leading to an effective batch size of 64.
trainer:
  devices: 8
  max_steps: 500000
  max_epochs:

dataset:
  num_workers: 4
  batch_size: 8

experiment:
  input_feature_dim: 768


models:
  conditioning:
    _target_: routed.ocl.conditioning.RandomConditioning
    n_slots: 7
    object_dim: 256

    batch_size_path: input.batch_size
  feature_extractor:
    model_name: vit_base_patch16_224_dino
    pretrained: ${when_testing:false,true}
    freeze: true

  object_decoder:
    _target_: routed.ocl.decoding.PatchDecoder
    decoder:
      _target_: ocl.neural_networks.build_mlp
      _partial_: true
      features: [2048, 2048, 2048]
    object_features_path: perceptual_grouping.objects
  1. /experiment/projects/bridging/dinosaur/_base_feature_recon
  2. /dataset/coco
  3. /experiment/projects/bridging/dinosaur/_preprocessing_coco_dino_feature_recon_ccrop
  4. /experiment/projects/bridging/dinosaur/_metrics_coco