configs/experiment/slot_attention/movi_c_optical_flow.yaml
# @package _global_
# Configuration to exactly reproduce unsupervised object recognition of the original slot attention
# paper.
defaults:
- /experiment/slot_attention/_base_optical_flow # (1)!
- /dataset: movi_c_image # (2)!
- /experiment/slot_attention/_preprocessing_movi # (3)!
- _self_
trainer:
devices: 8
max_steps: 500000
max_epochs:
dataset:
num_workers: 4
batch_size: 8
# Additionally sample frames from flow_backward.
train_transforms:
02_sample_frames:
fields: [image, backward_flow]
03_preprocessing:
transforms:
# Addtionally preprocess backward_flow.
# TODO(flwenzel): Normalize flow?
backward_flow:
_target_: torchvision.transforms.Compose
transforms:
- _target_: ocl.preprocessing.FlowToTensor
- _target_: torchvision.transforms.Resize
size: 128
eval_transforms:
02_sample_frames:
fields: [image, mask, backward_flow]
03_preprocessing:
transforms:
# Addtionally preprocess backward_flow.
backward_flow:
_target_: torchvision.transforms.Compose
transforms:
- _target_: ocl.preprocessing.FlowToTensor
- _target_: torchvision.transforms.Resize
size: 128
models:
conditioning:
n_slots: 7
- /experiment/slot_attention/_base_optical_flow
- /dataset/movi_c_image
- /experiment/slot_attention/_preprocessing_movi