Synthetic Difference-in-Difference (SDID)
The implementation is a clone of the R code published along with the paper (https://synth-inference.github.io/synthdid/). Except precision issues, the results should be identical. Please find more details in :cite:p:`sdid`.[1]:
from azcausal.data import CaliforniaProp99
from azcausal.core.error import JackKnife
from azcausal.estimators.panel.sdid import SDID
# load an example data set with the columns Year, State, PacksPerCapita, treated.
panel = CaliforniaProp99().panel()
# initialize an estimator object, here synthetic difference in difference (sdid)
estimator = SDID()
# run the estimator
result = estimator.fit(panel)
# show the results in a plot
estimator.plot(result, CF=True, C=True, show=False)
# run an error validation method
estimator.error(result, JackKnife())
# print out information about the estimate
print(result.summary(title="CaliforniaProp99"))
╭──────────────────────────────────────────────────────────────────────────────╮
| CaliforniaProp99 |
├──────────────────────────────────────────────────────────────────────────────┤
| Panel |
| Time Periods: 31 (19/12) total (pre/post) |
| Units: 39 (38/1) total (contr/treat) |
├──────────────────────────────────────────────────────────────────────────────┤
| ATT |
| Effect (±SE): -15.60 (±2.9161) |
| Confidence Interval (95%): [-21.32 , -9.8884] (-) |
| Observed: 60.35 |
| Counter Factual: 75.95 |
├──────────────────────────────────────────────────────────────────────────────┤
| Percentage |
| Effect (±SE): -20.54 (±3.8393) |
| Confidence Interval (95%): [-28.07 , -13.02] (-) |
| Observed: 79.46 |
| Counter Factual: 100.00 |
├──────────────────────────────────────────────────────────────────────────────┤
| Cumulative |
| Effect (±SE): -187.25 (±34.99) |
| Confidence Interval (95%): [-255.83 , -118.66] (-) |
| Observed: 724.20 |
| Counter Factual: 911.45 |
╰──────────────────────────────────────────────────────────────────────────────╯

[2]:
# the weights of control units to create synthetic control
result.effect['omega'].sort_values(ascending=False).head(10)
[2]:
Nevada 0.124489
New Hampshire 0.105048
Connecticut 0.078287
Delaware 0.070368
Colorado 0.057513
Illinois 0.053388
Nebraska 0.047853
Montana 0.045135
Utah 0.041518
New Mexico 0.040568
Name: omega, dtype: float64
[3]:
# the weights of each time-step for weighted DID
result.effect['lambd'].sort_values(ascending=False).head(5)
[3]:
1988 0.427076
1986 0.366471
1987 0.206453
1980 0.000000
1985 0.000000
Name: lambd, dtype: float64